Cargando…

Duality for Nonconvex Approximation and Optimization

In this monograph the author presents the theory of duality for nonconvex approximation in normed linear spaces and nonconvex global optimization in locally convex spaces. Key topics include: * duality for worst approximation (i.e., the maximization of the distance of an element to a convex set) * d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singer, Ivan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-28395-1
003 DE-He213
005 20220116172125.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387283951  |9 978-0-387-28395-1 
024 7 |a 10.1007/0-387-28395-1  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Singer, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Duality for Nonconvex Approximation and Optimization  |h [electronic resource] /  |c by Ivan Singer. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a XX, 356 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 2197-4152 
505 0 |a Preliminaries -- Worst Approximation -- Duality for Quasi-convex Supremization -- Optimal Solutions for Quasi-convex Maximization -- Reverse Convex Best Approximation -- Unperturbational Duality for Reverse Convex Infimization -- Optimal Solutions for Reverse Convex Infimization -- Duality for D.C. Optimization Problems -- Duality for Optimization in the Framework of Abstract Convexity -- Notes and Remarks. 
520 |a In this monograph the author presents the theory of duality for nonconvex approximation in normed linear spaces and nonconvex global optimization in locally convex spaces. Key topics include: * duality for worst approximation (i.e., the maximization of the distance of an element to a convex set) * duality for reverse convex best approximation (i.e., the minimization of the distance of an element to the complement of a convex set) * duality for convex maximization (i.e., the maximization of a convex function on a convex set) * duality for reverse convex minimization (i.e., the minimization of a convex function on the complement of a convex set) * duality for d.c. optimization (i.e., optimization problems involving differences of convex functions). Detailed proofs of results are given, along with varied illustrations. While many of the results have been published in mathematical journals, this is the first time these results appear in book form. In addition, unpublished results and new proofs are provided. This monograph should be of great interest to experts in this and related fields. Ivan Singer is a Research Professor at the Simion Stoilow Institute of Mathematics in Bucharest, and a Member of the Romanian Academy. He is one of the pioneers of approximation theory in normed linear spaces, and of generalizations of approximation theory to optimization theory. He has been a Visiting Professor at several universities in the U.S.A., Great Britain, Germany, Holland, Italy, and other countries, and was the principal speaker at an N. S. F. Regional Conference at Kent State University. He is one of the editors of the journals Numerical Functional Analysis and Optimization (since its inception in 1979), Optimization, and Revue d'analyse num\'erique et de th\'eorie de l'approximation. His previous books include Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces (Springer 1970), The Theory of Best Approximation and Functional Analysis (SIAM 1974), Bases in Banach Spaces I, II (Springer, 1970, 1981), and Abstract Convex Analysis (Wiley-Interscience, 1997). 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 0 |a Mathematical optimization. 
650 0 |a Approximation theory. 
650 1 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Optimization. 
650 2 4 |a Approximations and Expansions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387509105 
776 0 8 |i Printed edition:  |z 9781441921031 
776 0 8 |i Printed edition:  |z 9780387283944 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 2197-4152 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-28395-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)