Cargando…

Undergraduate Algebra

Undergraduate Algebra is a text for the standard undergraduate algebra course. It concentrates on the basic structures and results of algebra, discussing groups, rings, modules, fields, polynomials, finite fields, Galois Theory, and other topics. The author has also included a chapter on groups of m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lang, Serge (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:3rd ed. 2005.
Colección:Undergraduate Texts in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-27475-1
003 DE-He213
005 20220117223331.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387274751  |9 978-0-387-27475-1 
024 7 |a 10.1007/0-387-27475-8  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Lang, Serge.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Undergraduate Algebra  |h [electronic resource] /  |c by Serge Lang. 
250 |a 3rd ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 389 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
505 0 |a The Integers -- Groups -- Rings -- Polynomials -- Vector Spaces and Modules -- Some Linear Groups -- Field Theory -- Finite Fields -- The Real and Complex Numbers -- Sets. 
520 |a Undergraduate Algebra is a text for the standard undergraduate algebra course. It concentrates on the basic structures and results of algebra, discussing groups, rings, modules, fields, polynomials, finite fields, Galois Theory, and other topics. The author has also included a chapter on groups of matrices which is unique in a book at this level. Throughout the book, the author strikes a balance between abstraction and concrete results, which enhance each other. Illustrative examples accompany the general theory. Numerous exercises range from the computational to the theoretical, complementing results from the main text. For the third edition, the author has included new material on product structure for matrices (e.g. the Iwasawa and polar decompositions), as well as a description of the conjugation representation of the diagonal group. He has also added material on polynomials, culminating in Noah Snyder's proof of the Mason-Stothers polynomial abc theorem. About the First Edition: The exposition is down-to-earth and at the same time very smooth. The book can be covered easily in a one-year course and can be also used in a one-term course...the flavor of modern mathematics is sprinkled here and there. - Hideyuki Matsumura, Zentralblatt. 
650 0 |a Algebra. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 1 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387501376 
776 0 8 |i Printed edition:  |z 9781441919595 
776 0 8 |i Printed edition:  |z 9780387220253 
830 0 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-27475-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)