Cargando…

Geometric Fundamentals of Robotics

Geometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Selig, J.M (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:2nd ed. 2005.
Colección:Monographs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-27274-0
003 DE-He213
005 20220114224158.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387272740  |9 978-0-387-27274-0 
024 7 |a 10.1007/b138859  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Selig, J.M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Fundamentals of Robotics  |h [electronic resource] /  |c by J.M. Selig. 
250 |a 2nd ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XVIII, 398 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monographs in Computer Science,  |x 2512-5486 
505 0 |a Lie Groups -- Subgroups -- Lie Algebra -- A Little Kinematics -- Line Geometry -- Representation Theory -- Screw Systems -- Clifford Algebra -- A Little More Kinematics -- The Study Quadric -- Statics -- Dynamics -- Constrained Dynamics -- Differential Geometry. 
520 |a Geometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics, it includes significant state-of-the art material that reflects important advances in the field, connecting robotics back to mathematical fundamentals in group theory and geometry. Key features: * Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras * Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D * Introduces mathematical concepts and methods using examples from robotics * Solves substantial problems in the design and control of robots via new methods * Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions * Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text. ----- From a Review of the First Edition: "The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics." --MathSciNet. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Geometry. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematics. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387501017 
776 0 8 |i Printed edition:  |z 9781441919298 
776 0 8 |i Printed edition:  |z 9780387208749 
830 0 |a Monographs in Computer Science,  |x 2512-5486 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138859  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)