Cargando…

Regression Methods in Biostatistics Linear, Logistic, Survival, and Repeated Measures Models /

This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for long...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vittinghoff, Eric (Autor), Glidden, David V. (Autor), Shiboski, Stephen C. (Autor), McCulloch, Charles E. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Statistics for Biology and Health,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-27255-9
003 DE-He213
005 20220114123811.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387272559  |9 978-0-387-27255-9 
024 7 |a 10.1007/b138825  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Vittinghoff, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Regression Methods in Biostatistics  |h [electronic resource] :  |b Linear, Logistic, Survival, and Repeated Measures Models /  |c by Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, Charles E. McCulloch. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 
505 0 |a Exploratory and Descriptive Methods -- Basic Statistical Methods -- Linear Regression -- Predictor Selection -- Logistic Regression -- Survival Analysis -- Repeated Measures and Longitudinal Data Analysis -- Generalized Linear Models -- Complex Surveys -- Summary. 
520 |a This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes. Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way. The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided. For many students and researchers learning to use these methods, this one book may be all they need to conduct and interpret multipredictor regression analyses. The authors are on the faculty in the Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, and are authors or co-authors of more than 200 methodological as well as applied papers in the biological and biomedical sciences. The senior author, Charles E. McCulloch, is head of the Division and author of Generalized Linear Mixed Models (2003), Generalized, Linear, and Mixed Models (2000), and Variance Components (1992). 
650 0 |a Probabilities. 
650 0 |a Biometry. 
650 0 |a Epidemiology. 
650 0 |a Public health. 
650 1 4 |a Probability Theory. 
650 2 4 |a Biostatistics. 
650 2 4 |a Epidemiology. 
650 2 4 |a Public Health. 
700 1 |a Glidden, David V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shiboski, Stephen C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a McCulloch, Charles E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387500850 
776 0 8 |i Printed edition:  |z 9781441919052 
776 0 8 |i Printed edition:  |z 9780387202754 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138825  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)