Cargando…

Synaptic Plasticity and Transsynaptic Signaling

Brain functions are realized by the activity of neuronal networks composed of a huge number of neurons. The efficiency of information transfer within the networks is changeable. Even the networks themselves can change through experience. Information transfer between neurons is performed at the synap...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Stanton, Patric K. (Editor ), Bramham, Clive (Editor ), Scharfman, Helen E. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-25443-2
003 DE-He213
005 20220116011550.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387254432  |9 978-0-387-25443-2 
024 7 |a 10.1007/b107409  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
245 1 0 |a Synaptic Plasticity and Transsynaptic Signaling  |h [electronic resource] /  |c edited by Patric K. Stanton, Clive Bramham, Helen E. Scharfman. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 557 p. 119 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Three Faces of Norepinephrine: Plasticity at the Perforant Path-Dentate Gyrus Synapse -- The Histaminergic System in Brain: Memory and Synaptic Plasticity -- Spike Timing Dependent Plasticity of Rat Hippocampal and Cortical Synapses and Control by Muscarinic Transmission -- Hydrogen Peroxide Regulates Metaplasticity in the Hippocampus -- Neuronal Plasticity and Seizure Spread in the Entorhinal Cortex and Hippocampus of Amygdala Kindled Rats -- Presynaptic Ionotropic GABA Receptors -- Activity Dependent Regulation of the Cl? Transporting System in Neurons -- The Truth About Mossy Fiber Long-Term Potentiation -- The Gluzinergic Synapse: Who's Talking and Who's Listening? -- Zinc Dyshomeostasis in Neuronal Injury -- BDNF as a Trigger for Transsynaptic Consolidation in the Adult Brain -- On the Role of Neurotrophins in Dendritic Calcium Signaling -- Brain-Derived Neurotrophic Factor (BDNF) and the Dentate Gyrus Mossy Fibers: Implications for Epilepsy -- Transsynaptic Dialogue Between Excitatory and Inhibitory Hippocampal Synapses via Endocannabinoids -- Talking Back: Endocannabinoid Retrograde Signaling Adjusts Synaptic Efficacy -- Synaptic Vesicle Recycling as a Substrate for Neural Plasticity -- Retrograde Messengers in Long-Term Plasticity of Presynaptic Glutamate Release in Hippocampus -- Hippocampal Long-Term Depression as a Declarative Memory Mechanism -- NMDA Receptors: From Protein-Protein Interactions to Transactivation -- The Phases of LTP: The New Complexities -- CREB: A Cornerstone of Memory Consolidation? -- Synaptic Plasticity in the Central Nervous System: A Role for Calcium-Regulated Adenylyl Cyclases -- Rapid Nuclear Responses to Action Potentials -- Synaptic Dialogue: Substrate for Protein-Synthesis-Independent Long-Term Memory -- Coordinated Pre- and Postsynaptic Changes Involved in Developmental Activity-Dependent Synapse Elimination -- Recent Advances in the Role of Integrins in Developmental and Adult Synaptic Plasticity -- Consolidation: A View from the Synapse -- Morphological Plasticity of the Synapse -- Role of the Spine Apparatus in Synaptic Plasticity -- Amyloid-? As a Biologically Active Peptide in CNS. 
520 |a Brain functions are realized by the activity of neuronal networks composed of a huge number of neurons. The efficiency of information transfer within the networks is changeable. Even the networks themselves can change through experience. Information transfer between neurons is performed at the synapse (the site of the neurons' contact) by release of neurotransmitters from the pre-synaptic cell and capture of neurotransmitters by the post-synaptic cell. The amount of released neurotransmitter or the efficacy of capture can change. Moreover, synapses are found to be newly formed upon activity or abandoned upon inactivity. These changes are called "synaptic plasticity". This text focuses on one component of synaptic plasticity called transsynaptic signaling, or communication of synapses during their formation. 
650 0 |a Neurosciences. 
650 0 |a Cytology. 
650 1 4 |a Neuroscience. 
650 2 4 |a Cell Biology. 
700 1 |a Stanton, Patric K.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bramham, Clive.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Scharfman, Helen E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387504148 
776 0 8 |i Printed edition:  |z 9781441936806 
776 0 8 |i Printed edition:  |z 9780387240084 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b107409  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)