Cargando…

Algorithmic Learning in a Random World

Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability. This new monograph integrates mathematical th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vovk, Vladimir (Autor), Gammerman, Alex (Autor), Shafer, Glenn (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-25061-8
003 DE-He213
005 20220119082143.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387250618  |9 978-0-387-25061-8 
024 7 |a 10.1007/b106715  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Vovk, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algorithmic Learning in a Random World  |h [electronic resource] /  |c by Vladimir Vovk, Alex Gammerman, Glenn Shafer. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 324 p. 62 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Conformal prediction -- Classification with conformal predictors -- Modifications of conformal predictors -- Probabilistic prediction I: impossibility results -- Probabilistic prediction II: Venn predictors -- Beyond exchangeability -- On-line compression modeling I: conformal prediction -- On-line compression modeling II: Venn prediction -- Perspectives and contrasts. 
520 |a Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability. This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap. Topics and Features: * Describes how conformal predictors yield accurate and reliable predictions, complemented with quantitative measures of their accuracy and reliability * Handles both classification and regression problems * Explains how to apply the new algorithms to real-world data sets * Demonstrates the infeasibility of some standard prediction tasks * Explains connections with Kolmogorov's algorithmic randomness, recent work in machine learning, and older work in statistics * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of some of the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Data Structures and Information Theory. 
700 1 |a Gammerman, Alex.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shafer, Glenn.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387500720 
776 0 8 |i Printed edition:  |z 9781441934710 
776 0 8 |i Printed edition:  |z 9780387001524 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b106715  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)