Cargando…

Practical Mathematical Optimization An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms /

This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form without neglecting rigour. The work should enable the professional to apply optimization theory and algorithms to his own particular practical field of interest, be...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Snyman, Jan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Applied Optimization ; 97
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-24349-8
003 DE-He213
005 20220120105714.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387243498  |9 978-0-387-24349-8 
024 7 |a 10.1007/b105200  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Snyman, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Mathematical Optimization  |h [electronic resource] :  |b An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms /  |c by Jan Snyman. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XX, 258 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Optimization ;  |v 97 
505 0 |a Line Search Descent Methods for Unconstrained Minimization -- Standard Methods for Constrained Optimization -- New Gradient-Based Trajectory and Approximation Methods -- Example Problems -- Some Theorems. 
520 |a This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form without neglecting rigour. The work should enable the professional to apply optimization theory and algorithms to his own particular practical field of interest, be it engineering, physics, chemistry, or business economics. Most importantly, for the first time in a relatively brief and introductory work, due attention is paid to the difficulties-such as noise, discontinuities, expense of function evaluations, and the existence of multiple minima-that often unnecessarily inhibit the use of gradient-based methods. In a separate chapter on new gradient-based methods developed by the author and his coworkers, it is shown how these difficulties may be overcome without losing the desirable features of classical gradient-based methods. Audience It is intended that this book be used in senior- to graduate-level semester courses in optimization, as offered in mathematics, engineering, computer science, and operations research departments, and also to be useful to practising professionals in the workplace. 
650 0 |a Mathematical optimization. 
650 0 |a Algorithms. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Numerical analysis. 
650 1 4 |a Optimization. 
650 2 4 |a Algorithms. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387504872 
776 0 8 |i Printed edition:  |z 9780387243481 
776 0 8 |i Printed edition:  |z 9780387298245 
830 0 |a Applied Optimization ;  |v 97 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b105200  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)