Cargando…

Quadratic Programming and Affine Variational Inequalities A Qualitative Study /

This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequalities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lee, Gue Myung (Autor), Tam, N.N (Autor), Yen, Nguyen Dong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Nonconvex Optimization and Its Applications ; 78
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-24278-1
003 DE-He213
005 20220120214211.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387242781  |9 978-0-387-24278-1 
024 7 |a 10.1007/b105061  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Lee, Gue Myung.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quadratic Programming and Affine Variational Inequalities  |h [electronic resource] :  |b A Qualitative Study /  |c by Gue Myung Lee, N.N. Tam, Nguyen Dong Yen. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 346 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonconvex Optimization and Its Applications ;  |v 78 
505 0 |a Quadratic Programming Problems -- Existence Theorems for Quadratic Programs -- Necessary and Sufficient Optimality Conditions for Quadratic Programs -- Properties of the Solution Sets of Quadratic Programs -- Affine Variational Inequalities -- Solution Existence for Affine Variational Inequalities -- Upper-Lipschitz Continuity of the Solution Map in Affine Variational Inequalities -- Linear Fractional Vector Optimization Problems -- The Traffic Equilibrium Problem -- Upper Semicontinuity of the KKT Point Set Mapping -- Lower Semicontinuity of the KKT Point Set Mapping -- Continuity of the Solution Map in Quadratic Programming -- Continuity of the Optimal Value Function in Quadratic Programming -- Directional Differentiability of the Optimal Value Function -- Quadratic Programming under Linear Perturbations: I. Continuity of the Solution Maps -- Quadratic Programming under Linear Perturbations: II. Properties of the Optimal Value Function -- Quadratic Programming under Linear Perturbations: III. The Convex Case -- Continuity of the Solution Map in Affine Variational Inequalities. 
520 |a This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequalities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters briefly discuss two concrete models (a linear fractional vector optimization and a traffic equilibrium problem) whose analysis can benefit greatly from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of continuity and differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequalities where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequalities under linear perturbations are studied in three other chapters. One special feature of this book is that when a certain property of a characteristic map or function is investigated, the authors always try first to establish necessary conditions for it to hold, then they go on to study whether the obtained necessary conditions are sufficient ones. This helps to clarify the structures of the two classes of problems under consideration. The qualitative results can be used for dealing with algorithms and applications related to quadratic programming problems and affine variational inequalities. Audience This book is intended for graduate and postgraduate students in applied mathematics, as well as researchers in the fields of nonlinear programming and equilibrium problems. It can be used for some advanced courses on nonconvex quadratic programming and affine variational inequalities. 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Optimization. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Operations Research and Decision Theory. 
700 1 |a Tam, N.N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Yen, Nguyen Dong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387504704 
776 0 8 |i Printed edition:  |z 9781441937131 
776 0 8 |i Printed edition:  |z 9780387242774 
830 0 |a Nonconvex Optimization and Its Applications ;  |v 78 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b105061  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)