Cargando…

Mining Sequential Patterns from Large Data Sets

The focus of Mining Sequential Patterns from Large Data Sets is on sequential pattern mining. In many applications, such as bioinformatics, web access traces, system utilization logs, etc., the data is naturally in the form of sequences. This information has been of great interest for analyzing the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wang, Wei (Autor), Yang, Jiong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Advances in Database Systems ; 28
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-24247-7
003 DE-He213
005 20220117000849.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387242477  |9 978-0-387-24247-7 
024 7 |a 10.1007/b104937  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Wang, Wei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mining Sequential Patterns from Large Data Sets  |h [electronic resource] /  |c by Wei Wang, Jiong Yang. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XV, 163 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Database Systems ;  |v 28 
505 0 |a Related Work -- Periodic Patterns -- Statistically Significant Patterns -- Approximate Patterns -- Conclusion Remark. 
520 |a The focus of Mining Sequential Patterns from Large Data Sets is on sequential pattern mining. In many applications, such as bioinformatics, web access traces, system utilization logs, etc., the data is naturally in the form of sequences. This information has been of great interest for analyzing the sequential data to find its inherent characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. To meet the different needs of various applications, several models of sequential patterns have been proposed. This volume not only studies the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. Mining Sequential Patterns from Large Data Sets provides a set of tools for analyzing and understanding the nature of various sequences by identifying the specific model(s) of sequential patterns that are most suitable. This book provides an efficient algorithm for mining these patterns. Mining Sequential Patterns from Large Data Sets is designed for a professional audience of researchers and practitioners in industry and also suitable for graduate-level students in computer science. . 
650 0 |a Data mining. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a Multimedia systems. 
650 0 |a Computer networks . 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Data Science. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Yang, Jiong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441937070 
776 0 8 |i Printed edition:  |z 9780387504605 
776 0 8 |i Printed edition:  |z 9780387242460 
830 0 |a Advances in Database Systems ;  |v 28 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b104937  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)