Cargando…

Progress in Galois Theory Proceedings of John Thompson's 70th Birthday Conference /

A recent trend in the field of Galois theory is to tie the previous theory of curve coverings (mostly of the Riemann sphere) and Hurwitz spaces (moduli spaces for such covers) with the theory of algebraic curves and their moduli spaces. A general survey of this is given in the article by Voelklein....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Voelklein, Helmut (Editor ), Shaska, Tanush (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Developments in Mathematics, 12
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-23534-9
003 DE-He213
005 20220117133741.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387235349  |9 978-0-387-23534-9 
024 7 |a 10.1007/b101762  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
245 1 0 |a Progress in Galois Theory  |h [electronic resource] :  |b Proceedings of John Thompson's 70th Birthday Conference /  |c edited by Helmut Voelklein, Tanush Shaska. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a X, 168 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 2197-795X ;  |v 12 
505 0 |a Supplementary Thoughts on Symplectic Groups -- Automorphisms of the Modular Curve -- Reducing the Fontaine-Mazur Conjecture to Group Theory -- Relating Two Genus 0 Problems of John Thompson -- Relatively Projective Groups as Absolute Galois Groups -- Invariants of Binary Forms -- Some Classical Views on the Parameters of the Grothendieck-Teichmüller Group -- The Image of a Hurwitz Space Under the Moduli Map -- Very Simple Representations: Variations on a Theme of Clifford. 
520 |a A recent trend in the field of Galois theory is to tie the previous theory of curve coverings (mostly of the Riemann sphere) and Hurwitz spaces (moduli spaces for such covers) with the theory of algebraic curves and their moduli spaces. A general survey of this is given in the article by Voelklein. Further exemplifications come in the articles of Guralnick on automorphisms of modular curves in positive characteristic, of Zarhin on the Galois module structure of the 2-division points of hyperelliptic curves and of Krishnamoorthy, Shashka and Voelklein on invariants of genus 2 curves. Abhyankar continues his work on explicit classes of polynomials in characteristic p>0 whose Glaois groups comprise entire families of Lie type groups in characteristic p. In his article, he proves a characterization of sympletic groups required for the identification of the Galois group of certain polynomials. The more abstract aspects come into play when considering the totality of Galois extensions of a given field. This leads to the study of absolute Galois groups and (profinite) fundamental groups. Haran and Jarden present a result on the problem of finding a group-theoretic characterization of absolute Galois groups. In a similar spirit, Boston studies infinite p-extensions of number fields unramified at p and makes a conjecture about a group-theoretic characterization of their Galois groups. He notes connections with the Fontaine-Mazur conjecture, knot theory and quantum field theory. Nakamura continues his work on relationships between the absolute Galois group of the rationals and the Grothendieck-Teichmüller group. Finally, Fried takes us on a tour of places where classical tropics like modular curves and j-line covers connect to the genus zero problems which was the starting point of the Guralnick-Thompson Conjecture. Audience This volume is suitable for graduate students and researchers in the field. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebra. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Voelklein, Helmut.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Shaska, Tanush.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441936349 
776 0 8 |i Printed edition:  |z 9780387503400 
776 0 8 |i Printed edition:  |z 9780387235332 
830 0 |a Developments in Mathematics,  |x 2197-795X ;  |v 12 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b101762  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)