Cargando…

Handbook of Generalized Convexity and Generalized Monotonicity

Various generalizations of the classical concept of a convex function have been introduced, especially during the second half of the 20th century. Generalized convex functions are the many nonconvex functions which share at least one of the valuable properties of convex functions. Apart from their...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hadjisavvas, Nicolas (Editor ), Komlósi, Sándor (Editor ), Schaible, Siegfried S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Nonconvex Optimization and Its Applications ; 76
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-23393-2
003 DE-He213
005 20220118172856.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387233932  |9 978-0-387-23393-2 
024 7 |a 10.1007/b101428  |2 doi 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKB  |2 thema 
082 0 4 |a 515.8  |2 23 
245 1 0 |a Handbook of Generalized Convexity and Generalized Monotonicity  |h [electronic resource] /  |c edited by Nicolas Hadjisavvas, Sándor Komlósi, Siegfried S. Schaible. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XX, 672 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonconvex Optimization and Its Applications ;  |v 76 
505 0 |a to Convex and Quasiconvex Analysis -- Criteria for Generalized Convexity and Generalized Monotonicity in the Differentiable Case -- Continuity and Differentiability of Quasiconvex Functions -- Generalized Convexity and Optimality Conditions in Scalar and Vector Optimization -- Generalized Convexity in Vector Optimization -- Generalized Convex Duality and its Economic Applicatons -- Abstract Convexity -- Fractional Programming -- Generalized Monotone Maps -- Generalized Convexity and Generalized Derivatives -- Generalized Convexity, Generalized Monotonicity and Nonsmooth Analysis -- Pseudomonotone Complementarity Problems and Variational Inequalities -- Generalized Monotone Equilibrium Problems and Variational Inequalities -- Uses of Generalized Convexity and Generalized Monotonicity in Economics. 
520 |a  Various generalizations of the classical concept of a convex function have been introduced, especially during the second half of the 20th century. Generalized convex functions are the many nonconvex functions which share at least one of the valuable properties of convex functions. Apart from their theoretical interest, they are often more suitable than convex functions to describe real-word problems in disciplines such as economics, engineering, management science, probability theory and in other applied sciences. More recently, generalized monotone maps which are closely related to generalized convex functions have also been studied extensively. While initial efforts to generalize convexity and monotonicity were limited to only a few research centers, today there are numerous researchers throughout the world and in various disciplines engaged in theoretical and applied studies of generalized convexity/monotonicity (see http://www.genconv.org). The Handbook offers a systematic and thorough exposition of the theory and applications of the various aspects of generalized convexity and generalized monotonicity. It is aimed at the non-expert, for whom it provides a detailed introduction, as well as at the expert who seeks to learn about the latest developments and references in his research area. Results in this fast growing field are contained in a large number of scientific papers which appeared in a variety of professional journals, partially due to the interdisciplinary nature of the subject matter. Each of its fourteen chapters is written by leading experts of the respective research area starting from the very basics and moving on to the state of the art of the subject. Each chapter is complemented by a comprehensive bibliography which will assist the non-expert and expert alike. 
650 0 |a Functions of real variables. 
650 0 |a Game theory. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Real Functions. 
650 2 4 |a Game Theory. 
650 2 4 |a Operations Research, Management Science . 
700 1 |a Hadjisavvas, Nicolas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Komlósi, Sándor.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Schaible, Siegfried S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387502717 
776 0 8 |i Printed edition:  |z 9780387232553 
776 0 8 |i Printed edition:  |z 9781489995025 
830 0 |a Nonconvex Optimization and Its Applications ;  |v 76 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b101428  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)