Cargando…

Collected Papers Volume I 1955-1966 /

For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kostant, Bertram (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Joseph, Anthony (Editor ), Kumar, Shrawan (Editor ), Vergne, Michèle (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-09583-7
003 DE-He213
005 20220117121256.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387095837  |9 978-0-387-09583-7 
024 7 |a 10.1007/b94535  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Kostant, Bertram.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Collected Papers  |h [electronic resource] :  |b Volume I 1955-1966 /  |c by Bertram Kostant ; edited by Anthony Joseph, Shrawan Kumar, Michèle Vergne. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XX, 518 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Holonomy and the Lie Algebra of Infinitesimal Motions of A Riemannian Manifold -- On the Conjugacy of Real Cartan Subalgebras -- On the Conjugacy of Real Cartan Subalgebras II -- On INV Ariant Skew-Tensors -- On Differential Geomentry and Homogeneous Spaces. I. -- On Differential Geometry and Homogeneous Spaces II -- On Holonomy and Homogeneous Spaces -- A Theorem of Frobenius, a Theorem of Amitsur-Levitski and Cohomology Theory -- A Characterization of the Classical Groups -- A Formula for the Multiplicity of a Weight -- The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group -- A Characterization of Invariant Affine Connections -- Lie Algebra Cohomology and the Generalized Borel-Weil Theorem -- Differential Forms on Regular Affine Algebras -- Differential Forms and Lie Algebra Cohomology for Algebraic Linear Groups -- Lie Group Representations On Polynomial Rings -- Lie Group Representations on Polynomial Rings -- Lie Algebra Cohomology and Generalized Schubert Cells -- Eigenvalues of a Laplacian and Commutative Lie Subalgebras -- Orbits, Symplectic Structures and Representation Theory -- Groups Over. 
520 |a For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. Some specific topics cover algebraic groups and invariant theory, the geometry of homogeneous spaces, representation theory, geometric quantization and symplectic geometry, Lie algebra cohomology, Hamiltonian mechanics, modular forms, Whittaker theory, Toda lattice, and much more. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. This is the first volume (1955-1966) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this first volume is Kostant's commentaries and summaries of his papers in his own words. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical physics. 
650 0 |a Geometry, Differential. 
650 1 4 |a Algebra. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Geometry. 
700 1 |a Joseph, Anthony.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kumar, Shrawan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vergne, Michèle.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387560908 
776 0 8 |i Printed edition:  |z 9780387095820 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b94535  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)