Cargando…

Analytical Dynamics Theory and Applications /

In his great work, Mecanique Analytique (1788)-^Lagrange used the term "analytical" to mean "non-geometrical." Indeed, Lagrange made the following boast: "No diagrams will be found in this work. The methods that I explain in it require neither constructions nor geometrical o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ardema, Mark D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-306-48682-1
003 DE-He213
005 20220118070751.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780306486821  |9 978-0-306-48682-1 
024 7 |a 10.1007/b116020  |2 doi 
050 4 |a T1-995 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
072 7 |a TBC  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Ardema, Mark D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analytical Dynamics  |h [electronic resource] :  |b Theory and Applications /  |c by Mark D. Ardema. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Review of Newtonian Dynamics -- Motion and Constraints -- Virtual Displacement and Virtual Work -- Variational Principles -- Generalized Coordinates -- Lagrange's Equations -- Formulation of Equations -- Integration of Equations -- Examples -- Central Force Motion -- Gyroscopic Motion -- Stability Of Motion -- Impulsive Motion -- Gibbs-Appell Equations -- Hamilton's Equations -- Contact Transformations -- Hamilton-Jacobi Equation -- Approximation Methods. 
520 |a In his great work, Mecanique Analytique (1788)-^Lagrange used the term "analytical" to mean "non-geometrical." Indeed, Lagrange made the following boast: "No diagrams will be found in this work. The methods that I explain in it require neither constructions nor geometrical or mechanical arguments, but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will, with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its field." This was in marked contrast to Newton's Philosohiae Naturalis Principia Mathematica (1687) which is full of elaborate geometrical constructions. It has been remarked that the classical Greeks would have understood some of the Principia but none of the Mecanique Analytique. The term analytical dynamics has now come to mean the develop­ ments in dynamics from just after Newton to just before the advent of relativity theory and quantum mechanics, and it is this meaning of the term that is meant here. Frequent use will be made of diagrams to illus­ trate the theory and its applications, although it will be noted that as the book progresses and the material gets "more analytical", the number of figures per chapter tends to decrease, although not monotonically. 
650 0 |a Engineering. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Technology and Engineering. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387500621 
776 0 8 |i Printed edition:  |z 9780306486814 
776 0 8 |i Printed edition:  |z 9781493991068 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b116020  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)