|
|
|
|
LEADER |
00000aam a2200000 i 4500 |
001 |
000165653 |
005 |
20240807145804.3 |
007 |
ta |
008 |
080108t20072007nyua g 001 0 eng d |
020 |
|
|
|a 9780199208258
|q (rústica)
|
020 |
|
|
|a 0199208255
|q (rústica)
|
040 |
|
|
|a DLC
|b spa
|e rda
|c DLC
|d OCLCO
|d MX-MxUAM
|
041 |
0 |
|
|a eng
|
050 |
|
4 |
|a QA372
|b J6.72 2007
|
090 |
|
|
|a QA372
|b J6.72 2007
|
100 |
1 |
|
|a Jordan, D. W.,
|q (Dominic William),
|e autor
|
245 |
1 |
0 |
|a Nonlinear ordinary differential equations :
|b an introduction for scientists and engineers /
|c D.W. Jordan, P. Smith.
|
250 |
|
|
|a Fourth edition.
|
264 |
|
1 |
|a Oxford [England] :
|a New York :
|b Oxford University Press,
|c [2007].
|
264 |
|
4 |
|a ©2007.
|
300 |
|
|
|a viii, 531 páginas :
|b ilustraciones, gráficas en blanco y negro ;
|c 26 cm.
|
336 |
|
|
|a texto
|b txt
|2 rdacontent
|
337 |
|
|
|a sin medio
|b n
|2 rdamedia
|
338 |
|
|
|a volumen
|b nc
|2 rdacarrier
|
504 |
|
|
|a Incluye referencias bibliográficas: (páginas [521]-523) e índice.
|
505 |
2 |
0 |
|g 1.
|t Second-order differential equations in the phase plane. --
|g 2.
|t Plane autonomous systems and linearization. --
|g 3.
|t Geometrical aspects of plane autonomous systems. --
|g 4.
|t Periodic solutions, averaging methods. --
|g 5.
|t Perturbation methods. --
|g 6.
|t Singular perturbation methods. --
|g 7.
|t Forced oscillations : harmonic and subharmonic response, stability, and entrainment. --
|g 8.
|t Stability. --
|g 9.
|t Stability by solution perturbation : Mathieu's equation. --
|g 10.
|t Liapunov methods for determining stability of the zero solution. --
|g 11.
|t Existence of periodic solutions. --
|g 12.
|t Bifurcations and manifolds. --
|g 13.
|t Poincaré sequences, homoclinic bifurcation, and chaos.
|
520 |
1 |
|
|a This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text and answers are provided at the back of the book. Topics include phase plane analysis, nonlinear damping, small parameter expansions and singular perturbations, stability, Liapunov methods, Poincare sequences, homoclinic bifurcation and Liapunov exponents. Over 500 end-of-chapter problems are also included and as an additional resource fully-worked solutions to these are provided in the accompanying text Nonlinear Ordinary Differential Equations: Problems and Solutions, (OUP, 2007). Both texts cover a wide variety of applications while keeping mathematical prequisites to a minimum making these an ideal resource for students and lecturers in engineering, mathematics and the sciences.
|
650 |
|
0 |
|a Differential equations, Nonlinear
|
650 |
|
4 |
|a Ecuaciones diferenciales no lineales
|
650 |
|
0 |
|a Nonlinear theories
|
650 |
|
4 |
|a Teorías no lineales
|
700 |
1 |
|
|a Smith, Peter,
|d 1935-,
|e autor
|
905 |
|
|
|a LIBROS
|
938 |
|
|
|a Comunidad
|c CBI
|
949 |
|
|
|a Biblioteca UAM Iztapalapa
|b Colección General
|c QA372 J6.72 2007
|