|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
000108548 |
005 |
19990917160455.0 |
007 |
ta |
008 |
031120t19991999nyua 001 0 eng d |
020 |
|
|
|a 0824779150
|q (papel alcalino)
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d OrLoB-B
|d MX-MxUAM
|
041 |
0 |
|
|a eng
|
050 |
|
4 |
|a QA248
|b H7.3 1999
|
090 |
|
|
|a QA248
|b H7.3 1999
|
100 |
1 |
|
|a Hrbacek, Karel,
|d 1944-,
|e autor
|
245 |
1 |
0 |
|a Introduction to set theory /
|c Karel Hrbacek, Thomas Jech.
|
250 |
|
|
|a Tercera edición.
|
264 |
|
1 |
|a New York ;
|a Basel :
|b Marcel Dekker,
|c [1999].
|
264 |
|
4 |
|a ©1999.
|
300 |
|
|
|a 291 páginas :
|b ilustraciones ;
|c 24 cm.
|
336 |
|
|
|a texto
|b txt
|2 rdacontent
|
337 |
|
|
|a sin medio
|b n
|2 rdamedia
|
338 |
|
|
|a volumen
|b nc
|2 rdacarrier
|
490 |
1 |
|
|a Monographs and textbooks in pure and applied mathematics
|v 220
|
504 |
|
|
|a Incluye referencias bibliográficas: (páginas: 285-286) e índice.
|
505 |
0 |
0 |
|t Preface to the Third Edition. --
|t Preface to the Second Edition. --
|g 1.
|t Sets --
|g 2.
|t Relations, Functions, and Orderings --
|g 3.
|t Natural Numbers --
|g 4.
|t Finite, Countable, and Uncountable Sets --
|g 5.
|t Cardinal Numbers --
|g 6.
|t Ordinal Numbers --
|g 7.
|t Alephs --
|g 8.
|t The Axiom of Choice --
|g 9.
|t Arithmetic of Cardinal Numbers --
|g 10.
|t Sets of Real Numbers --
|g 11.
|t Filters and Ultrafilters --
|g 12.
|t Combinatorial Set Theory --
|g 13.
|t Large Cardinals --
|g 14.
|t The Axiom of Foundation --
|g 15.
|t The Axiomatic Set Theory --
|t Bibliography --
|t Index --
|
520 |
1 |
|
|a "Thoroughly revised, updated, expanded, and reorganized to serve as a primary text for mathematics courses, Introduction to Set Theory, Third Edition covers "the basics" - relations, functions, and orderings; finite, countable, and uncountable sets; and cardinal and ordinal numbers - in nine chapters perfect for a one-quarter or one-semester course ... provides five additional self-contained chapters to supplement the basic course or serve as a second-semester syllabus ... consolidates the material on real numbers into a single updated chapter affording flexibility in course design ... supplies end-of-section problems, with hints, of varying degrees of difficulty ... Karel Hrbacek is Professor in the Department of Mathematics, City College, City University of New York. *** Thomas Jech is Professor of Mathematics at Pennsylvania State University, University Park.
|
650 |
|
0 |
|a Set theory
|
650 |
|
4 |
|a Teoría de conjuntos
|
700 |
1 |
|
|a Jech, Thomas J.,
|e autor
|
830 |
|
0 |
|a Monographs and textbooks in pure and applied mathematics ;
|v 220
|
905 |
|
|
|a LIBROS
|
949 |
|
|
|a Biblioteca UAM Iztapalapa
|b Colección General
|c QA248 H7.3 1999
|