Cargando…

Linear analysis : an introductory course /

Now revised and updated, this brisk introduction to functional analysis is intended for advanced undergraduate students, typically final year, who have had some background in real analysis. The author’s aim is not just to cover the standard material in a standard way, but to present results of appli...

Descripción completa

Detalles Bibliográficos
Clasificación:QA320 B6.44 1999
Autor principal: Bollobás, Béla (autor)
Formato: Libro
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1999.
Edición:Segunda edición.
Colección:Cambridge mathematical textbooks.
Temas:

MARC

LEADER 00000nam a2200000 i 4500
001 000108065
005 20240716143500.0
007 ta
008 090806s1999 enka 001 0 eng d
020 |a 0521655773  |q (rústica) 
040 |a MX-MxUAM  |b eng  |e rda  |c MX-MxUAM  |d UAMI 
041 0 |a eng 
050 4 |a QA320  |b B6.44 1999 
090 |a QA320  |b B6.44 1999 
100 1 |a Bollobás, Béla,  |e autor 
245 1 0 |a Linear analysis :  |b an introductory course /  |c Béla Bollobás. 
250 |a Segunda edición. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1999. 
300 |a xi, 240 páginas :  |b ilustraciones ;  |c 23 cm. 
336 |a texto  |b txt  |2 rdacontent 
337 |a sin medio  |b n  |2 rdamedia 
338 |a volumen  |b nc  |2 rdacarrier 
490 1 |a Cambridge mathematical textbooks 
500 |a Incluye índice. 
505 0 0 |g 1.  |t Basic inequalities --  |g 2.  |t Normed spaces and bounded linear operators --  |g 3.  |t Linear functionals and the Hahn-Banach theorem --  |g 4.  |t Finite-dimensional normed spaces --  |g 5.  |t The Baire category theorem and the closed-graph theorem --  |g 6.  |t Continuous functions on compact spaces and the Stone-Weierstrass theorem --  |g 7.  |t The contraction-mapping theorem --  |g 8.  |t Weak topologies and duality --  |g 9.  |t Euclidean spaces and Hilbert spaces --  |g 10.  |t Orthonormal systems --  |g 11.  |t Adjoint operators --  |g 12.  |t The algebra of bounded linear operators --  |g 13.  |t Compact operators on Banach spaces --  |g 14.  |t Compact normal operators --  |g 15.  |t Fixed-point theorems --  |g 16.  |t Invariant subspaces. 
520 0 |a Now revised and updated, this brisk introduction to functional analysis is intended for advanced undergraduate students, typically final year, who have had some background in real analysis. The author’s aim is not just to cover the standard material in a standard way, but to present results of application in contemporary mathematics and to show the relevance of functional analysis to other areas. Unusual topics covered include the geometry of finite-dimensional spaces, invariant subspaces, fixed-point theorems, and the Bishop-Phelps theorem. An outstanding feature is the large number of exercises, some straightforward, some challenging, none uninteresting. 
650 0 |a Functional analysis 
650 4 |a Análisis funcional 
830 0 |a Cambridge mathematical textbooks. 
905 |a LIBROS 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA320 B6.44 1999