|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
000108065 |
005 |
20240716143500.0 |
007 |
ta |
008 |
090806s1999 enka 001 0 eng d |
020 |
|
|
|a 0521655773
|q (rústica)
|
040 |
|
|
|a MX-MxUAM
|b eng
|e rda
|c MX-MxUAM
|d UAMI
|
041 |
0 |
|
|a eng
|
050 |
|
4 |
|a QA320
|b B6.44 1999
|
090 |
|
|
|a QA320
|b B6.44 1999
|
100 |
1 |
|
|a Bollobás, Béla,
|e autor
|
245 |
1 |
0 |
|a Linear analysis :
|b an introductory course /
|c Béla Bollobás.
|
250 |
|
|
|a Segunda edición.
|
264 |
|
1 |
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 1999.
|
300 |
|
|
|a xi, 240 páginas :
|b ilustraciones ;
|c 23 cm.
|
336 |
|
|
|a texto
|b txt
|2 rdacontent
|
337 |
|
|
|a sin medio
|b n
|2 rdamedia
|
338 |
|
|
|a volumen
|b nc
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge mathematical textbooks
|
500 |
|
|
|a Incluye índice.
|
505 |
0 |
0 |
|g 1.
|t Basic inequalities --
|g 2.
|t Normed spaces and bounded linear operators --
|g 3.
|t Linear functionals and the Hahn-Banach theorem --
|g 4.
|t Finite-dimensional normed spaces --
|g 5.
|t The Baire category theorem and the closed-graph theorem --
|g 6.
|t Continuous functions on compact spaces and the Stone-Weierstrass theorem --
|g 7.
|t The contraction-mapping theorem --
|g 8.
|t Weak topologies and duality --
|g 9.
|t Euclidean spaces and Hilbert spaces --
|g 10.
|t Orthonormal systems --
|g 11.
|t Adjoint operators --
|g 12.
|t The algebra of bounded linear operators --
|g 13.
|t Compact operators on Banach spaces --
|g 14.
|t Compact normal operators --
|g 15.
|t Fixed-point theorems --
|g 16.
|t Invariant subspaces.
|
520 |
0 |
|
|a Now revised and updated, this brisk introduction to functional analysis is intended for advanced undergraduate students, typically final year, who have had some background in real analysis. The authors aim is not just to cover the standard material in a standard way, but to present results of application in contemporary mathematics and to show the relevance of functional analysis to other areas. Unusual topics covered include the geometry of finite-dimensional spaces, invariant subspaces, fixed-point theorems, and the Bishop-Phelps theorem. An outstanding feature is the large number of exercises, some straightforward, some challenging, none uninteresting.
|
650 |
|
0 |
|a Functional analysis
|
650 |
|
4 |
|a Análisis funcional
|
830 |
|
0 |
|a Cambridge mathematical textbooks.
|
905 |
|
|
|a LIBROS
|
949 |
|
|
|a Biblioteca UAM Iztapalapa
|b Colección General
|c QA320 B6.44 1999
|