|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
000106612 |
005 |
20010609234428.0 |
007 |
ta |
008 |
070629s2001 nyua 001 0 eng |
020 |
|
|
|a 0387950605
|q (papel alcalino)
|
040 |
|
|
|a DLC
|b spa
|e rda
|c DLC
|d C#P
|d MX-MxUAM
|
041 |
0 |
|
|a eng
|
042 |
|
|
|a pcc
|
050 |
|
4 |
|a QA300
|b A2.36
|
082 |
0 |
0 |
|a 515
|
090 |
|
|
|a QA300
|b A2.36
|
100 |
1 |
|
|a Abbott, Stephen,
|d 1964-,
|e autor
|
245 |
1 |
0 |
|a Understanding analysis /
|c Stephen Abbott.
|
264 |
|
1 |
|a New York :
|b Springer,
|c 2001.
|
300 |
|
|
|a xii, 257 páginas :
|b ilustraciones ;
|c 25 cm.
|
336 |
|
|
|a texto
|b txt
|2 rdacontent
|
337 |
|
|
|a sin medio
|b n
|2 rdamedia
|
338 |
|
|
|a volumen
|b nc
|2 rdacarrier
|
490 |
1 |
|
|a Undergraduate texts in mathematics
|
504 |
|
|
|a Incluye referencias bibliográficas: (páginas 251-252).
|
505 |
2 |
0 |
|g 1.
|t The Real Numbers. --
|g 1.1.
|t Discussion: The Irrationality of [square root of]2. --
|g 1.2.
|t Some Preliminaries. --
|g 1.3.
|t The Axiom of Completeness. --
|g 1.4.
|t Consequences of Completeness. --
|g 1.5.
|t Cantor's Theorem. --
|g 2.
|t Sequences and Series. --
|g 2.1.
|t Discussion: Rearrangements of Infinite Series. --
|g 2.2.
|t The Limit of a Sequence. --
|g 2.3.
|t The Algebraic and Order Limit Theorems. --
|g 2.4.
|t The Monotone Convergence Theorem and a First Look at Infinite Series. --
|g 2.5.
|t Subsequences and the Bolzano-Weierstrass Theorem. --
|g 2.6.
|t The Cauchy Criterion. --
|g 2.7.
|t Properties of Infinite Series. --
|g 2.8.
|t Double Summations and Products of Infinite Series. --
|g 3.
|t Basic Topology of R. --
|g 3.1.
|t Discussion: The Cantor Set. --
|g 3.2.
|t Open and Closed Sets. --
|g 3.3.
|t Compact Sets. --
|g 3.4.
|t Perfect Sets and Connected Sets. --
|g 3.5.
|t Baire's Theorem. --
|g 4.
|t Functional Limits and Continuity. --
|g 4.1.
|t Discussion: Examples of Dirichlet and Thomae. --
|g 4.2.
|t Functional Limits. --
|g 4.3.
|t Combinations of Continuous Functions. --
|g 4.4.
|t Continuous Functions on Compact Sets. --
|g 4.5.
|t The Intermediate Value Theorem. --
|g 4.6.
|t Sets of Discontinuity. --
|g 5.
|t The Derivative. --
|g 5.1.
|t Discussion: Are Derivatives Continuous?. --
|g 5.2.
|t Derivatives and the Intermediate Value Property. --
|g 5.3.
|t The Mean Value Theorem. --
|g 5.4.
|t A Continuous Nowhere-Differentiable Function.
|
520 |
0 |
|
|a A textbook for an elementary, one-semester course in a mathematically rigorous approach to the study of functions of a real variable. Focuses on the questions that make the subject most interesting to new students, such as whether derivatives are integrable or continuous. Makes topics accessible by answering these questions using mathematics. DLC: Mathematical analysis. *** This book outlines an elementary, one-semester course which exposes students to both the process of rigor, and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.
|
650 |
|
0 |
|a Mathematical analysis
|
650 |
|
4 |
|a Análisis matemático
|
830 |
|
0 |
|a Undergraduate texts in mathematics
|
905 |
|
|
|a LIBROS
|
938 |
|
|
|a Comunidad
|c CBI
|
938 |
|
|
|a Dr. Dr. Carlos Signoret Pendiente ;
|b Ecuaciones diferenciales
|n Octubre 27, 2003.
|c Solic. Difusión Científica
|n Estruc prog. 126020192;
|
949 |
|
|
|a Biblioteca UAM Iztapalapa
|b Colección General
|c QA300 A2.36
|