Mathematics : a concise history and philosophy /
Clasificación: | QA21 A5.47 |
---|---|
Autor principal: | |
Formato: | Libro |
Idioma: | Inglés |
Publicado: |
New York :
Springer-Verlag,
1994.
|
Colección: | Undergraduate texts in mathematics. Readings in mathematics.
|
Temas: |
Tabla de Contenidos:
- Preface 1. Mathematics for Civil Servants
- 2. The Earliest Number Theory
- 3. The Dawn of Deductive Mathematics
- 4. The Pythagoreans
- 5. The Pythagoreans and Perfection
- 6. The Pythagoreans and Polyhedra
- 7. The Pythagoreans and Irrationality
- 8. The Need for the Infinite
- 9. Mathematics in Athens Before Plato
- 10. Plato
- 11. Aristotle
- 12. In the Time of Eudoxus
- 13. Ruler and Compass Constructions
- 14. The Oldest Surviving Math Book
- 15. Euclid's Geometry Continued
- 16. Alexandria and Archimedes
- 17. The End of Greek Mathematics
- 18. Early Medieval Number Theory
- 19. Algebra in the Early Middle Ages
- 20. Geometry in the Early Middle Ages
- 21. Khayyam and the Cubic
- 22. The Later Middle Ages
- 23. Modern Mathematical Notation
- 24. The Secret of the Cubic
- 25. The Secret Revealed
- 26. A New Calculating Device
- 27. Mathematics and Astronomy
- 28. The Seventeenth Century
- 29. Pascal
- 30. The Seventeenth Century II
- 31. Leibniz
- 32. The Eighteenth Century
- 33. Lagrange
- 34. Nineteenth-Century Algebra
- 35. Nineteenth-Century Analysis
- 36. Nineteenth-Century Geometry
- 37. Nineteenth-Century Number Theory
- 38. Cantor
- 39. Foundations
- 40 Twentieth-Century Number Theory
- References
- Appendix A . Sample Assignments and Tests
- Appendix B. Answers to Selected Exercises
- Index