Cargando…

The mathematical theory of black holes /

In 1935, Subrahmanyan Chandrasekhar challenged the prevailing theory of the day by suggesting that not all stars die the same death. He proposed that stars with more than 1.4 times the mass of the sun were compressed by their own gravitational forces into dense, dark objects. Winner of the 1983 Nobe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chandrasekhar, Subrahmanyan, 1910-1995
Otros Autores: Chandrasekhar, S. (Subrahmanyan), 1910-1995
Formato: Libro
Idioma:Inglés
Publicado: Oxford : New York : Oxford University Press, c1983.
Colección:International series of monographs on physics (Oxford, England) ; 69.
Temas:
Acceso en línea:Publisher description
Table of contents only

MARC

LEADER 00000cam a2200000 4500
001 000048459
003 OCoLC
005 20061214024442.0
008 031120r19831982nyua b 001-0 eng
010 |a 93181092 
015 |a GB93-28261 
020 |a 0198520506 
020 |a 0198512910  |c (alk. paper) 
040 |a DLC  |c DLC  |d UKM  |d RRR  |d UBA  |d BAKER  |d BTCTA 
050 4 |a QB843 A2.5  |b Ch3.5 
082 0 0 |a 523.8/875/0151  |2 20 
090 |a QB843 A2.5  |b Ch3.5 
099 |a QB843.B55  |a C48 1992 
100 1 |a Chandrasekhar, Subrahmanyan,  |d 1910-1995 
245 1 4 |a The mathematical theory of black holes /  |c S. Chandrasekhar. 
260 |a Oxford :  |a New York :  |b Oxford University Press,  |c c1983. 
300 |a xxi, 646 p. :  |b ill. ;  |c 24 cm. 
490 1 |a The International series of monographs on physics ;  |v 69 
504 |a Includes bibliographical references and index. 
505 0 |g 1.  |t Mathematical Preliminaries --  |g 2.  |t A Space-time of Sufficient Generality --  |g 3.  |t The Schwarzchild Space-Time --  |g 4.  |t The Perturbations of the Schwarzchild Black-Hole --  |g 5.  |t The Reissner-Nordstrom Solution --  |g 6.  |t The Kerr Metric --  |g 7.  |t The Geodesics in the Kerr Space-Time --  |g 8.  |t Electromagnetic Waves in Kerr Geometry --  |g 9.  |t The Gravitational Perturbations of the Kerr Black-hole --  |g 10.  |t Spin-half Particles in Kerr Geometry --  |g 11.  |t Other Solutions --  |g 12.  |t Other Methods --  |t Appendix --  |t Epilogue 
520 0 |a In 1935, Subrahmanyan Chandrasekhar challenged the prevailing theory of the day by suggesting that not all stars die the same death. He proposed that stars with more than 1.4 times the mass of the sun were compressed by their own gravitational forces into dense, dark objects. Winner of the 1983 Nobel Prize for Physics, Chandrasekhar here describes in exhaustive detail how a rotating black hole reacts to gravitational and electromagnetic waves - the forces associated with an infalling star. The author provides background material with a survey of the analytical methods necessary for the study of solutions that describe a rotating black hole, a derivation of the Schwartzschild metric of essential space-time features, and an account of how gravitational waves are scattered and absorbed. This is followed by a discussion of the Reisner - Nordstrom solution which predicts external and internal horizons and prepares the reader for the author's thorough treatment of the Kerr family of solutions. 
520 0 |a Beginning with the derivations of the Kerr metric, Chandrasekhar goes on to describe space-time in a Newman-Penrose formulation. He investigates such elements of the Kerr solution as geodesics and space-time - including the possibility of extracting energy from a rotating black hole, perturbations of the black hole with Maxwell's equations and the propagation of electromagnetic waves, gravitational perturbations, fields of spin-1/2 both massive and massless. His analysis shows that all relevant equations of mathematical physics allow explicit solutions in Kerr geometry. In the last chapter, Chandrasekhar deals with two other classes of solutions: axisymetric black hole solutions which are static but not asymptotically flat, and solutions which provide for an arbitrary number of isolated black holes, the relativistic analogue of the static equilibrium arrangement of Newtonian gravitational theory. This unique work encompasses not only the complete range of what is currently known about the properties of black holes, but the directions of future research. 
650 0 |a Black holes (Astronomy)  |x Mathematics. 
650 0 |a Kerr black holes. 
650 0 |a Space and time  |x Mathematics. 
653 0 |a Black holes 
650 0 |a Black holes (Astronomy) 
650 7 |a Astronomía 
650 4 |a Agujeros negros (Astronomía) 
650 4 |a Abismos negros (Astronomía) 
700 1 |a Chandrasekhar, S.  |q (Subrahmanyan),  |d 1910-1995. 
830 0 |a International series of monographs on physics (Oxford, England) ;  |v 69. 
856 4 2 |z Publisher description  |u http://www.loc.gov/catdir/enhancements/fy0635/93181092-d.html 
856 4 1 |3 Table of contents only  |u http://www.loc.gov/catdir/enhancements/fy0635/93181092-t.html 
905 |a LIBROS 
902 |a Juan Pascual Garcia L. 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QB843 A2.5 Ch3.5