Cargando…

Differential equations and dynamical systems /

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is giv...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Perko, Lawrence
Formato: Libro
Idioma:Inglés
Publicado: New York : Springer, c1996.
Edición:2nd ed.
Colección:Texts in applied mathematics ; 7
Temas:
Acceso en línea:About this textbook

MARC

LEADER 00000nam a2200000 4500
001 000019798
003 MCM
005 20010609085339.0
008 031120s1996 nyua b 001-0 eng
010 |a 96015204 
020 |a 0387947787 (hard : acid-free paper) 
035 |a MITb10797462 
035 |a (OCoLC)34513461 
040 |a DLC  |c DLC  |d MYG 
050 4 |a QA372  |b P4.7 1996 
082 0 0 |a 515/.353  |2 20 
090 |a QA372  |b P4.7 1996 
099 |a QA372  |a .P47 1996 
100 1 |a Perko, Lawrence. 
245 1 0 |a Differential equations and dynamical systems /  |c Lawrence Perko. 
250 |a 2nd ed. 
260 |a New York :  |b Springer,  |c c1996. 
300 |a xiv, 519 p. :  |b ill. ;  |c 24 cm. 
440 0 |a Texts in applied mathematics ;  |v 7 
504 |a Includes bibliographical references (p. [507]-512) and index. 
505 0 0 |g 1.  |t Linear Systems --  |g 2.  |t Nonlinear Systems: Local Theory --  |g 3.  |t Nonlinear Systems: Global Theory --  |g 4.  |t Nonlinear Systems: Bifurcation Theory.. 
520 0 |a This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem, the use of the Poincare map in the theory of limit cycles, the theory of rotated vector fields and its use in the study of limit cycles and homoclinic loops, and a description of the behavior and termination of one-parameter families of limit cycles. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations, including new sections on Francoise's algorithm for higher order Melnikov functions and on the finite codimension bifurcations that occur in the class of bounded quadratic systems. 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Differentiable dynamical systems. 
650 4 |a Ecuaciones diferenciales no lineales 
650 4 |a Sistemas dinámicos diferenciales 
852 0 0 |b PSE  |c MAIN  |h QA372  |i P47 1996  |x Schulich Science & Engineerin 
856 4 1 |z About this textbook  |u http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-40109-22-1364228-0,00.html 
905 |a LIBROS 
902 |a Laura M. Hermenegildo C. 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA372 P4.7 1996