Cargando…

Categories for the working mathematician /

Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a descri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mac Lane, Saunders, 1909-
Formato: Libro
Idioma:Inglés
Publicado: New York, Springer-Verlag, [c1971].
Colección:Graduate texts in mathematics ; 5.
Temas:
Acceso en línea:Look inside another edition of this book
About this textbook

MARC

LEADER 00000nam a2200000 4500
001 000009598
005 20010831203900.0
008 031120s1971 nyu b 000-0 eng
010 |a 78166080 //r84 
020 |a 0387900357 
020 |a 0387900365 (pbk) 
020 |a 3540900365 (Berlin pbk) 
035 |a (CaOTUIC)15575856 
035 9 |a AAW0034 
040 |a DLC  |c DLC 
050 4 |a QA169  |b M3.3 
082 0 0 |a 512/.55 
090 |a QA169  |b M3.3 
099 |a QA169  |a .M33 
100 1 |a Mac Lane, Saunders,  |d 1909- 
245 1 0 |a Categories for the working mathematician /  |c Saunders Mac Lane. 
260 |a New York,  |b Springer-Verlag,  |c [c1971]. 
300 |a 262 p. 
300 |a ix, 262 p.  |c 25 cm. 
490 1 |a Graduate texts in mathematics.  |v 5 
504 |a Bibliography: p. 249-252. 
505 0 0 |g I.  |t Categories, Functors, and Natural Transformations --  |g II.  |t Constructions on Categories --  |g III.  |t Universals and Limits --  |g IV.  |t Adjoints --  |g V.  |t Limits --  |g VI.  |t Monads and Algebras --  |g VII.  |t Monoids --  |g VIII.  |t Abelian Categories --  |g IX.  |t Special Limits --  |g X.  |t Kan Extensions --  |g XI.  |t Symmetry and Braiding in Monoidal Categories --  |g XII.  |t Structures in Categories --  |g App.  |t Foundations --  |t Table of Standard Categories: Objects and Arrows. 
520 0 |a Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and expoitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is on symmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories. 
650 4 |a Categorías (Matemáticas) 
650 0 |a Categories (Mathematics) 
830 0 |a Graduate texts in mathematics ;  |v 5. 
852 0 0 |b PSE  |c MAIN  |h QA169  |i M33 1998  |x Schulich Science & Engineering 
856 4 1 |z Look inside another edition of this book  |u http://www.amazon.com/gp/reader/0387900357/ref=sib_dp_pt/104-6935366-2579154#reader-link 
856 4 1 |z About this textbook  |u http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-151-22-10042275-0,00.html?changeHeader=true 
905 |a LIBROS 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA169 M3.3