Cargando…

Basic topology /

In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and ap...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Armstrong, M. A. (Mark Anthony)
Otros Autores: Armstrong, Mark Anthony
Formato: Libro
Idioma:Inglés
Publicado: New York : Springer-Verlag, 1983.
Colección:Undergraduate texts in mathematics.
Temas:
Acceso en línea:About this textbook
Armstrong's Website

MARC

LEADER 00000nam a2200000 4500
001 000006224
005 20061219221800.0
008 031120s1983 nyua 00010 eng
010 |a 0387908390 
020 |a 0387908390 
050 4 |a QA611  |b A7.53 
090 |a QA611  |b A7.53 
100 1 |a Armstrong, M. A.  |q (Mark Anthony) 
245 1 0 |a Basic topology /  |c M. A. Armstrong. 
260 |a New York :  |b Springer-Verlag,  |c 1983. 
300 |a xii, 251 p :  |b ill. ;  |c 25 cm. 
490 1 |a Undergraduate texts in mathematics. 
504 |a Includes Bibliography: p. 244-245 and index. 
505 0 |t Preface.  |g 1:  |t Introduction.  |g 2:  |t Continuity. --  |g 3:  |t Compactness and connectedness. --  |g 4:  |t Identification spaces. --  |g 5:  |t The fundamental group. --  |g 6:  |t Triangulations. --  |g 7:  |t Surfaces. --  |g 8:  |t Simplicial homology. --  |g 9:  |t Degree and Lefschetz number. --  |g 10:  |t Knots and covering spaces. --  |g Appendix:  |t Generators and relations.  |t Bibliography.  |t Index. 
520 0 |a In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject 
650 0 |a Topology. 
650 4 |a Topología 
700 1 |a Armstrong, Mark Anthony 
856 4 1 |z About this textbook  |u http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10046-22-2326954-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook,00.html 
856 4 1 |z Armstrong's Website  |u http://maths.dur.ac.uk/pure/temphome/maa.html 
830 0 |a Undergraduate texts in mathematics. 
905 |a LIBROS 
092 |a 514  |b A73 
902 |a Guadalupe Guevara y Navarro 
949 |a Biblioteca UAM Iztapalapa  |b Colección General  |c QA611 A7.53 
997 |b acas